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Abstract 

Quantum-chemical density-functional theory (DFT) 
calculations, using the local-density approximation 
(LDA), have been performed for hydrogen-bounded 
silicon clusters to determine the electron density 
distribution of the Si-Si bond. The density distribution 
in the bonding region is compared with calculated and 
X-ray values of the bond in the crystal and found to be 
in good agreement. Using Hirshfeld's method for 
charge partitioning, a central Si atom was isolated and 
used for building a crystal. The corresponding structure 
factors agree very well (R < 0.14%) with experimental 
ones obtained by the Pendell6sung method. 

Introduction 

Silicon has been a subject of intensive research for a few 
decades now but there are still several properties which 
are not well understood. Theoretical methods, such as 
band-structure calculations, do not always seem to 
reproduce experimental results. 

Hohenberg & Kohn (1964) have shown that the 
ground-state electron density distribution p(r) fully 
characterizes all properties of the many-body system in 
the ground state. As a corollary, no quantum-mech- 
anical method yielding an inaccurate electron density 
distribution will give proper energy values, unless 
compensation of errors occurs. With this in mind we set 
out to calculate the electron density distribution in 
silicon. This is all the more interesting because the 
calculations can be compared with the very accurate 
structure factors of silicon, obtained by Aldred & Hart 
(1973) and by Saka & Kato (1986) with the Pendel- 
16sung method. Spackman (1986) has analyzed various 
sets of measured structure factors and compared them 
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with different theories, while Cummings & Hart (1988) 
have recently reanalyzed the experiments of Aldred & 
Hart (1973)making some additional corrections. 

The work presented in this paper is based on 
molecular Hartree-Fock-Slater (HFS) LCAO calcula- 
tions. The present method cannot handle the periodi- 
city of the crystal. To obtain the density distribution 
of the silicon crystal, we determined p(r) in hydrogen- 
bounded silicon clusters of increasing size. The larger 
the cluster, the more a central atom is assumed to 
resemble the atoms in the crystal. By partitioning the 
charge distribution in the cluster, a central Si atom can 
be extracted from the cluster and used for building an 
infinite crystal by applying the proper symmetry 
operations. 

To verify the assumption and to judge the resulting 
crystalline electron density ffistdbution, structure fac- 
tors were calculated and compared with the results of 
Pendell6sung measurements by Aldred & Hart (1973) 
and Saka & Kato (1986), with values recommended by 
Spackman (1986) on the basis of careful analysis of 
existing data, and with the outcome of Yin & Cohen's 
(1982) band-structure calculations. 

Computational methods 

To calculate the electron density distribution p(r) in 
silicon clusters we employed the HFS-LCAO-DVM 
version of the LDA method. In the Hohenberg- 
Kohn-Sham formalism (Hohenberg & Kohn, 1964; 
Kohn & Sham, 1965) the calculation for spin-restricted 
states consists of self-consistently solving 

[__ 1 V2 + Vefr(r) ] ¢pi(r)= eicpi(r) (1) 
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where 

zn f p(r') = - -  + dr' + Vxc(r) (2) 
Veff(r) En [ r - -  R n I I r - -  r ' l  

(i.e. the sum of the nuclear potential acting on the 
electrons, the Coulomb potential produced by all the 
electrons and the exchange-correlation potential). 

The ground-state electron density distribution p(r) is 
given by 

p ( r )=  Z nil tPi(r) 12 (3) 
i 

in which n i is the occupation number of the orbital ¢i. 
The exchange-correlation potential Vxc(r) is, in the HFS 
version, approximated by 

3 1 1/3 v 
Vx¢(r) = --3~t L j (4) 

where ct is an adjustable parameter, taken to be 0.7 in 
the present work. 

In the HFS-LCAO-DVM version, as developed by 
Baerends, Ellis & Ros (1973) and Baerends & Ros 
(1973), the one-electron orbitals are expanded as a finite 
set of STO basis functions centered at the atomic 
nuclei. DVM denotes the discrete variational method as 
introduced by Ellis & Painter (1970) and Painter & 
Ellis (1970). 

The basis set for silicon clusters consisted of 6s, 5p 
and ld Cartesian STO functions on silicon, in addition 
to a frozen ls core (see Table 1). To describe the H 
atoms we used 3s and lp functions. The angles and 
distances in the clusters Si2H 6 (D3a symmetry), 
Si (S iH3)  4 (Td) and Si2(SiH3)  6 (Dad) were chosen to be 
the same as in the silicon crystal: all tetrahedral angles 
and an Si-Si  distance of 2.351 A. To saturate dangling 
bonds we placed H atoms on the surface of the cluster 
at a distance of 1.492 A from the Si atoms, as has been 
found in Si2H 6 molecules. 

For extracting the most central Si atom or Si-Si  
bond of a cluster we employed the partitioning scheme 
proposed by Hirshfeld (1977), which divides the total 
charge in a sensible way among the different atoms. 
According to this method one can for each atom define 
a sharing function 

pat°m(r--Ra) 
WAr) = (5) 

~o~t°m(r - -R/3)  

where/#t°m(r--R~,) denotes the electron density of a free 
atom centered at the atomic position R,~ in the cluster. 
The electron density of a Hirshfeld atom can now be 
defined as 

p,~(r) = W,~(r)p(r) (6) 

where p(r) is the total electron density of the cluster. 

Table 1. Basis sets (Cartesian STO functions) used for 
the HFS calculations 

The ls on silicon is an additional function for orthogonalization on 
the frozen ls core. 

Exponent 
Silicon: Is 11-90 

Hydrogen: 

2s 5.15 
2s 3.60 
3s 2.95 
3s 1.85 
3s 1.20 
2p 6-85 
2p 3-65 
3p 2.00 
3p 1.20 
3p 0.75 
3d 1-43 

ls 1.58 
ls 0.92 
ls 0.69 
2p 0.72 

To reduce errors which can occur in the numerical 
integration in the HFS calculation, we used in (6), 
instead of the total density p(r), the deformation density 
Ap(r) (i.e. the difference between the molecular density 
and the superposition of spherically averaged free-atom 
densities). The density Ap,~(r) is fitted by a least-squares 
minimization of the error 

D= f ~Ap~(r)- ~ cgt(r)]2dr (7) 

to a combination of one-center functions gi(r). Carte- 
sian STO's up to g-type functions were used for the one- 
center functions gi(r), obtaining a mean difference 
between Ap,~ and the fit, lower than 0.01 e A -3 with the 
largest values close to the nucleus. The structure factors 
are obtained by applying a Fourier transformation to 
the fit functions gi(r) and a summation over all the 
atoms in the unit cell of the silicon crystal. The resulting 
structure factors have been added to the structure 
factors obtained from the Hartree-Fock (non- 
relativistic) C(3P) wavefunction from Clementi (1965). 
These structure factors for free atoms have been 
calculated by Dawson & Willis (1967) (see also 
Cummings & Hart, 1988). 

Results and discussion 

Deformation density 
If the electron density distribution in the central part 

of an Si cluster remains unchanged when the cluster 
size is increased, it is assumed to be a representation of 
the density in the silicon crystal. Consequently, the total 
charge assigned to an Si atom by Hirshfeld partitioning 
should be zero. In Fig. 1 the deformation density Ap 
along the axis between two neighboring Si atoms is 
shown for different silicon clusters. For the SiaHls 
cluster the two different Si-Si  bonds in the cluster are 
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both given. The less-central Si-Si bond in the SisH~s 
cluster is almost equal to the bond in the SisH 12 cluster 
as is expected. The maximum in Ap at the midpoint 
between two Si atoms changes from 0.211 e A -3 in 
Si2H 6 to 0.195 e A -3 in SisH12 and to 0.172 e A -3 in 
the central bond of the SisH~8 cluster. By adding an 
extra f function to the basis set of the Si atom these 
maximum deformation densities are increased slightly 
by about 0-01 e A -3. 

Since these maxima are not the same for different 
clusters, the clusters do not fully represent the bonds in 
the crystal. Nevertheless the values are close to the 
measured values in crystalline silicon: Spackman 
(1986) reported a value of 0.206 e A -3 and Scheringer 
(1980) of 0.20 e A -3. The measured value of Price, 
Maslen & Mair (1978), corrected by Spackman (1986), 
for the maximum in zip is 0.20 e A -3. Saka & Kato 
(1986) reported a slightly larger value of 0.221 e A -3 
which is a direct consequence of their use of the 222 
reflection from Fehlmann & Fujimoto (1975). The 
value reported by Yang & Coppens (1974) of 
0.29 e A -a, which has already been questioned several 
times, is not confirmed by our calculations. 

One of the few theoretical calculations of zip(r) that 
has been published is by Wang & Klein (1981). They 
found a maximum in zip of 0.16 e A -3 using a linear 
combination of Gaussian orbitals (LCGO) method, a 
value which is smaller than the present one and than the 
experimental values. 

While the maximum in zip changes with increasing 
cluster size, the total deformation charge for the central 
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Fig. 1. Static deformation density along the Si-Si bonding, with Si 
atoms located at -1 .175 and 1.175 A. Shown: Si2H 6 (solid line); 
SisH~2 (dotted line); SisH~8 most central bond (dash-dotted line) 
and other bond (dashed line). 

Si atom decreases from 0.043 e in the SisH~2 cluster to 
0.028 e in the SisH~8 cluster. 

Possibly, much larger clusters are needed to obtain a 
fully converged deformation density and to remove 
density waves in the middle of the cluster. These density 
waves are the result of introducing a surface. They are 
observed by changing in the calculations the nuclear 
charge of the hydrogen atoms or the rather arbitrary, 
chosen S i -H  distance. A nuclear charge on the atoms 
in the SisH~2 cluster of q = 0.9 protons gives a maxi- 
mum in Ap of 0.185 compared to 0.195 e A -3 using 
real H atoms, while with reducing the nuclear charge 
you would expect this density to increase because the H 
atoms attract less charge. 

In Fig. 2 the deformation density of the SisHt8 cluster 
is plotted for the plane containing the most central 
Si-Si bond (the vertical bond on the right-hand side of 
the figure). This figure shows the density with the nuclei 
at rest. The areas close to the nuclei contain large 
positive and negative features. The excess-charge 
distribution between two neighboring Si atoms is clearly 
seen to be elliptical in shape, elongated perpendicular to 
the bond. Experimental deformation density maps 
confirm this shape as well as the deficit in the region 
behind the nuclei. In the SisH~s cluster we find a deficit 
density o f - 0 . 0 9 4  e A -3, 0.68 A behind the Si atoms 
on the interatomic axis. Saka & Kato (1986) and 
Spackman (1986) found values o f - 0 . 0 8 0  and 
--0.090 e A -3 for this deficit. The calculated value of 
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Fig. 2. Static deformation density of the SisH~s cluster in the plane 

containing three nearest neighbor Si atoms. The contour interval 
amounts to 0.025 e A -3. Positive contours (electron excess) are 
drawn as solid lines, zero contours are dash-dotted and negative 
contours (electron deficiency) are dotted. 
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Wang & Klein (1981) of--0.080 e A -3 is also in good 
agreement with our calculation. The density distribution 
in the other bond of Fig. 2 is similar to the first one. 
Since it is closer to the surface of the cluster it is 
assumed to be slightly inferior in representing a 
crystalline Si-Si  bond. 

Structure factors 

Structure factors Fhk t have been calculated starting 
from the Si2H 6, Si5H12 and Si8H18 clusters. When using 
the Si5H12 cluster we extracted the central Si atom from 
the cluster with the help of the Hirshfeld partitioning 
method. Subsequently, the symmetry operations of the 
silicon crystal were applied to the atomic deformation 
density. Structure factors were calculated by adding the 
Hartree-Fock scattering factors of the isolated atoms 
to the Fourier transform of the deformation density of 
the constructed unit cell. For the 800, 844 and 880 
reflections which were not reported by Dawson & 
Willis (1967), we took the scattering factors of Saka & 
Kato (1986). 

For the SisH~8 cluster we employed two methods. 
The first method (method I) is the same as described 
above, while in the second one (method II) we only used 
the most central Si-Si bond of the SisH~s cluster. For 
this method we assigned the deformation density of the 
central bond to all four tetrahedral bonds of the Si 
atom, before extracting the atom from the cluster. This 
last method (II) was also used for the Si2H 6 cluster. In 
Table 2 the calculated structure factors normalized to 
single atoms are given based on the SisH~8 cluster 
(method II). The normalized structure factors are 
defined a s  fhkl  : Fhkt /Q,  where Q = 8 for even-order 
reflections and Q = 4(21/2) for odd-order reflections. In 
the second column the calculated fhkl values for T = 
0 K are listed. These calculated values are compared 
with the following sets of experimental data. Cummings 
& Hart (1988) analyzed data sets of Aldred & Hart 
(1973) and Teworte & Bonse (1984) and report mean 
values of structure factors. Recently, Saka & Kato 
(1986) remeasured an extended set of structure factors 
with increased accuracy (tr < 0.1%). The values have 
been corrected for anomalous dispersion and the 
nucleus Thompson scattering, by Cummings & Hart 
(1988). In the following the corrected values will be 
used. Spackman (1986) analyzed combined data sets 
measured by several authors using both Fourier 
methods and a rigid pseudo-atom model. His values are 
corrected for anharmonicity, anomalous dispersion and 
harmonic thermal motion. His analysis yields a con- 
sistent averaged set of structure factors. 

In the third, fourth and fifth columns of Table 2 the 
relative deviations from the theoretical values Af/fcalc 
( A f = f o b s - - f c a l c ) ,  are listed for both sets of experi- 
mental data and for Spackman's set. We used f(mean) 
from Table 3 of Cummings & Hart (1988). We have 

Table 2. Calculated normal&ed structure factors 
(static) and relative residuals of measured values from 
Saka & Kato (1986) (S&K), Cummings & Hart (1988) 

(C&H) and Spackman (1986) (Sp) 
Values of A f / feat  ¢ are given in 10 -2 e. Af=fobs --fealr 

A f / f  ca,c 
h k l fca,c S & K  C & H  Sp 
1 1 1 10.6761 0.45 0.49 0.57 
2 2 0 8.6571 -0 .03  -0 .01  0.02 
3 1 1 8.0374 -0 .19  - 0 . 2 0  -0 .17  
4 0 0 7.4636 -0 .14  -0 .18  - 0 . 2 0  
3 3 1 7.2342 0.20 0.19 0.23 
4 2 2 6.7171 -0 .05  0.00 0.03 
3 3 3 6.4231 -0 .02  0.08 0.03 
5 1 1 6.4551 -0 .18  -0 .24  -0 .16  
4 4 0 6.0575 -0 .17  -0 .16  -0 .11  
4 4 4 4.9839 -0 .15  -0 .06  -0 .02  
5 5 1 4.8129 -0 .02  -0 .08  -0 .02  
6 4 2 4.5533 -0 .04  0.07 0.10 
8 0 0 4.1839 0.01 -0 .14  -0 .14  
6 6 0 3.8657 -0 .05  0.06 0.19 
5 5 5 3.7555 0.10 0.17 0.55 
8 4 4 3.1433 0.13 - 0 . 2 0  0.15 
8 8 0 2.5350 -0 .04  0.01 0.43 

R factor (%) 0.14 0.16 0-18 

reduced the values in the third and fourth columns to a 
hypothetical situation in which the atoms are con- 
sidered to be static, by dividing by the Debye-Waller 
factor for isotropic harmonic vibrations: exp- 
[-B(h2+k2+12)/4a 2] (a o is the unit-cell dimension). The 
temperature-dependent factor B is obtained by a 
least-squares fit of the experimental data with our 
calculated values. 

It can be seen that the relative deviations between the 
calculated and observed structure factors are small, 
with the largest value for the 111 reflection. The 
isotropic B value obtained by the least-squares fit with 
the measured factors of Saka & Kato (1986) and of 
Cummings & Hart (1988) is 0.464 (1)A 2, which is in 
excellent agreement with 0-469 A 2 of Price, Maslen & 
Mair (1978), 0.461 A 2 of Aldred & Hart (1973) and 
0.463 A 2 of Spackman (1986). 

For a quantitative comparison between our calcula- 
tions and the experiments, R factors have been 
calculated. The unweighted R factor is defined as 

~llf~atc I -  I fobs I [ 
R =  

Y Ifobsl 

which is almost equal to the R factor based on Fhk t 
instead offhkl. At the bottom of Table 2 the R factors 
corresponding with the sets of experimental data are 
listed. Table 3 shows the R factors obtained by a 
least-squares fit of our calculated values of Table 2, 
with the various data sets listed by Cummings & Hart 
(1988). Onlyffactors  common to all sets are used. We 
notice the high quality of Saka & Kato's (1986) data. In 
the following these data will be used for comparison 
with the results of our calculations, listed in Table 4. 
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Table 3. Calculated unweighted (static) R factors 
(R × 100) for the various sets of structure factors 

reported in Table 3 of Cummings & Hart (1988) 

The values are based on structure factors appearing in all sets. 

R factors 
Teworte & Bonse (1984) (Ag) 0.22 
Teworte & Bonse (1984) (Mo) 0.20 
Saka & Kato (1986) 0.18 
Aldred & Hart (1973) (Ag) 0.24 
Aldred & Hart (1973) (Mo) 0.27 

Table 4. Unweighted R factors (R x 100), comparing 
different cluster calculations with experimental results 

of Saka & Kato (1986) 

Saka & Kato (1986) 
Reference without dp 0.54 
Si2H 6 method II 0.11 
SisH~2 normal basis 0-08 
SisH~2 extraffunction 0.07 
SisHis method I 0.11 
SisH~s method II 0.14 

In this table the values based on the Si2H 6 cluster are 
calculated with method II, while for the Si5H12 cluster 
two values are given. The difference between the two 
values is that for the second an extra f function 
(Cartesian STO with an exponent of 1.35) was used in 
the basis set of the Si atom. The SisHls cluster is the 
basis for the last two rows, calculated with methods I 
and II respectively. Comparison with a reference value, 
where feaze is based solely on the Hartree-Fock atoms, 
shows the improvement in describing the electron 
density distribution: the discrepancy is reduced by a 
factor of four or more. Further, it appears that the 
structure factors obtained for the SiEH 6 and Si5H12 

clusters are slightly better than those for the SisH~s 
cluster, which is the opposite of what would be 
expected. The smallest R factor is 0.07%, for the SisH~2 
cluster with an extra f function in the basis set. There is 
only a small difference in R factors between the two 
different methods used for calculating the Fhkt'S of the 
SisH~s cluster. The differences in the density distribu- 
tion in the different bonding regions of an Si atom in the 
SisH~8 cluster have apparently little influence on the 
Fhkl' S. 

Spackman (1986) lists in his paper the R factors 
corresponding to various theoretical calculations like 
those from Yin & Cohen (1982) and Stukel & Euwema 
(1970). Those R factors vary between 0.35 and 1.49%, 
all much larger than the values we have calculated. 
Comparison of Yin & Cohen's (1982) data with our 
values confirmed Spackman's (1986) conclusion that a 
systematic error occurs in the spherical part of the 
electron density distribution. Reflections with the same 
scattering angle, where the same error is made, seem to 
follow the pattern observed in our calculations. 

Table 5. Room temperature values (T = 293 K) of the 
atomic structure factors from the 222, 442 and 622 

reflections 

A22 f,,2 A2~ 
Si2H ~ method II 0-197 0-0114 0.00074 
SisH~2 normal basis 0.160 0.0084 0.00018 
SisH~2 extraffunetion 0.167 0.0102 0.00060 
SisH~8 method I 0-152 0.0082 0.00031 
SiaH~s method II 0.143 0.0078 0.00016 

Finally, we discuss some forbidden reflections in 
silicon. The most important of these is the 222 reflection, 
which strongly contributes to the bonding density 
[about 0.07 e A -3 to the peak of the dynamic differ- 
ence density, according to Scheringer (1980)]. The 
results of our calculations are listed in Table 5. The 
reported values of f222(T=293 K) from different 
experiments var); from 0.11 to 0.223 e [see Alkire, 
Yelon & Schneider (1982), Table 2]. The two more 
recent measurements in this table are from Alkire, 
Yelon & Schneider (1982) who determined with ),-rays 
a value of 0-182(1)e for f222(T= 293 K), while 
Fehlmann & Fujimoto (1975) measured a larger value 
of 0.206 (4)e. Saka & Kato (1986) used this larger 
value in their calculation of the density, resulting in a 
rather large value for the maximum of the deformation 
density. Both these values are almost equal to the 
present value based on the Si2H 6 cluster and somewhat 
larger than the values corresponding to the other 
clusters. This is in agreement with the deviations of the 
maximum in the deformation density we found for the 
different clusters. Using method I for the SisH 18 cluster, 

f 2 2 2 ( T =  293 K) = 0.152 e, larger than with method II. 
This is probably caused by the asymmetry of the Si 
atom in this cluster, for which this reflection is very 
sensitive. 

The 442 and 622 reflections are much weaker in 
silicon. The values we found for the 442 reflection in the 
SisH~s cluster are in excellent agreement with the 
experimental value of Tischler & Batterman (1984) of 
0.0079 (4)e. Using the s i 2 n  6 cluster gives a somewhat 
larger value. We found large differences among the 
clusters for the very weak 622 reflection. The values for 
the SisHls cluster are smaller than f 6 2 2 ( T =  293 K) 
= 0.00058 (25)e reported by Tischler & Batterman 
(1984). The Si2H 6 cluster also gives this reflection the 
largest value, but within experimental accuracy. 

We arrive at the conclusion that HFS-LCAO 
calculations on silicon clusters yield an excellent 
representation of the electron density distribution in the 
silicon crystal as witnessed by: 

(i) The maximum deformation density in the bond- 
ing region is 0.211 e A -3 calculated in the Si2H 6 cluster, 
0.195 e A -a in the Si5H12 cluster and 0-172 e A -3 in the 
SisH~8 cluster, all close to the experimental value of 
0.21 e A -3. The deficit behind the Si atoms is in good 
agreement with experimental values ( -0 .09  versus 
- 0 . 0 8  e A-3). 
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(ii) The calculated structure factors are in better 
agreement with experiments than other theoretical 
calculations as shown by the very small R factors 
obtained (using no, or only one, fitting parameter) 
varying between 0.07 and 0.14%, compared with a 
smallest value of 0.35% in other calculations. The 
experimental results of Saka & Kato (1986) are seen to 
be better than the older ones of Aldred & Hart (1973). 

(iii) The temperature factor B fitting our calcula- 
tions to the measurements of Saka & Kato (1986) and 
with Cummings & Hart (1988) is 0.464 A 2, in excellent 
agreement with earlier reported values. 

The agreement with experiment deteriorates with 
smaller cluster size, a phenomenon which possibly can 
only be overcome by using much larger clusters to 
reduce observed charge density waves inside the cluster. 

This work was supported with computing time by 
SURF from the National Fund for the use of 
Supercomputers (NFS). 
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Coupling of Ferroelasticity to Ferroelectricity in NasW309F5 and the Structure at 295 K 
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Abstract 

Na5W3OgF 5, M r = 905.485, monoclinic P2 but refined 
in 12, a = 7.3597 (7), b = 10.6342 (15), c = 
7 .3618(10)A,  f l = 9 0 . 7 7 ( 2 )  °, V =  576.1(2) A 3, Z 
= 2, D m = 5.1 (1) (by flotation), D x = 5.219 gcm -3, 
2(Mo Ktx) = 0.71073 A, g = 308.3 cm -~, F(000) = 
788, T =  295 K, R = 0.042 for 1939 symmetry-inde- 
pendent reflections with Fro2> 3o(Fm2). Refinement in 
P2  was not feasible owing to the small number of weak 
reflections that violated the body-centered condition. 
Relationships among the atomic coordinates show that 
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the a and c axes are ferroelastically interchangeable, 
with the c-axis direction inverted, as the sense of the 
polar b axis is reversed ferroelectrically. The spon- 
taneous polarization (P~) is hence structurally coupled 
directly to the spontaneous strain (es). The largest total 
atomic displacement as Ps is reversed and e s is 
reoriented is about 0.73 A, by an O,F anion. The 
largest polar displacement by a W atom within its 
octahedron of anions that results in zero polarization is 
about 0.19 A, corresponding to a predicted transition 
temperature of 710 K as compared with a measured 
temperature of 800(10)K.  Each of the three inde- 
pendent W atoms occupies a distorted octahedron, with 
average W - O , F  distance of 1.90 (5)/~. The 0 2- and 
F-  anions are randomly distributed among the eight 
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